Factors of Binomial Coefficient/Corollary 1
Jump to navigation
Jump to search
Theorem
For all $r \in \R, k \in \Z$:
- $\paren {r - k} \dbinom r k = r \dbinom {r - 1} k$
from which:
- $\dbinom r k = \dfrac r {r - k} \dbinom {r - 1} k$ (if $r \ne k$)
Proof
\(\ds r \binom {r - 1} k\) | \(=\) | \(\ds r \frac {\paren {r - 1} \paren {\paren {r - 1} - 1} \cdots \paren {\paren {r - 1} - k + 2} \paren {\paren {r - 1} - k + 1} } {k \paren {k - 1} \paren {k - 2} \cdots 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {r \paren {r - 1} \paren {r - 2} \cdots \paren {r - k + 1} \paren {r - k} } {k \paren {k - 1} \paren {k - 2} \cdots 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {r - k} \frac {r \paren {r - 1} \paren {r - 2} \cdots \paren {r - k + 1} } {k \paren {k - 1} \paren {k - 2} \cdots 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {r - k} \binom r k\) |
$\Box$
Then:
- $\dbinom r k = \dfrac r {r - k} \dbinom {r - 1} k$
follows from the
- $\paren {r - k} \dbinom r k = r \dbinom {r - 1} k$
by dividing both sides by $r - k$.
$\blacksquare$
Sources
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.6$: Binomial Coefficients: $\text{C}$