Falling Factorial of Sum of Integers

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $r \in \R$ be a real number.

Let $a, b \in \Z$ be (positive) integers.

Then:

$r^{\underline {a + b} } = r^{\underline a} \paren {r - a}^{\underline b}$

where $r^{\underline a}$ denotes the $a$th falling factorial of $r$.


Proof

\(\ds r^{\underline {a + b} }\) \(=\) \(\ds \prod_{j \mathop = 0}^{a + b - 1} \paren {r - j}\) Definition of Falling Factorial
\(\ds \) \(=\) \(\ds \paren {\prod_{j \mathop = 0}^{a - 1} \paren {r - j} } \paren {\prod_{j \mathop = a}^{a + b - 1} \paren {r - j} }\)
\(\ds \) \(=\) \(\ds \paren {\prod_{j \mathop = 0}^{a - 1} \paren {r - j} } \paren {\prod_{j \mathop = 0}^{b - 1} \paren {r - a - j} }\) Translation of Index Variable of Product
\(\ds \) \(=\) \(\ds r^{\underline a} \paren {r - a}^{\underline b}\) Definition of Falling Factorial

$\blacksquare$