Finite Ordinal Plus Transfinite Ordinal

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $n$ be a finite ordinal.

Let $x$ be a transfinite ordinal.

Then:

$n + x = x$


Proof

By Transfinite Induction on $x$.

The proof will use $<$, $\in$, and $\subset$ interchangeably. This is justified by Transitive Set is Proper Subset of Ordinal iff Element of Ordinal.


Base Case

By our hypothesis, $\omega \le x$, so $x \nless \omega$, so we may begin our induction at $\omega$.

\(\ds n + \omega\) \(=\) \(\ds \bigcup_{y \mathop \in \omega} \paren {n + y}\) Definition of Ordinal Addition
\(\ds \forall y \in \omega: n + y \le \omega\) \(\implies\) \(\ds \bigcup_{y \mathop \in \omega} \paren {n + y} \le \omega\) Natural Number Addition is Closed and Indexed Union Subset
\(\ds \forall y \in \omega: y \le \paren {n + y}\) \(\implies\) \(\ds \bigcup_{y \mathop \in \omega} y \le \bigcup_{y \mathop \in \omega} \paren {n + y}\) Ordinal is Less than Sum and Indexed Union Subset
\(\ds \) \(\implies\) \(\ds \omega \le \bigcup_{y \mathop \in \omega} \paren {n + y}\) Limit Ordinal Equals its Union

From these conclusions, we may deduce that:

$\ds \omega = \bigcup_{y \mathop \in \omega} \paren {n + y}$


Inductive Case

\(\ds n + x\) \(=\) \(\ds x\)
\(\ds \leadsto \ \ \) \(\ds \paren {n + x}^+\) \(=\) \(\ds x^+\) Equality of Successors
\(\ds \leadsto \ \ \) \(\ds n + x^+\) \(=\) \(\ds x^+\) Definition of Ordinal Addition


Limit Case

\(\ds \forall y \in x: \, \) \(\ds n + y\) \(=\) \(\ds y\)
\(\ds \leadsto \ \ \) \(\ds \bigcup_{y \mathop \in x} \paren {n + y}\) \(=\) \(\ds \bigcup_{y \mathop \in x} y\) Indexed Union Equality
\(\ds \leadsto \ \ \) \(\ds n + x\) \(=\) \(\ds \bigcup_{y \mathop \in x} y\) Definition of Ordinal Addition
\(\ds \leadsto \ \ \) \(\ds n + x\) \(=\) \(\ds x\) Limit Ordinal Equals its Union

$\blacksquare$


Sources