Finite Set Formed by Substitution has Larger Intersection

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $S$ and $T$ be finite sets.


Let $x \in S \setminus T$.

Let $y \in T \setminus S$.


Let $R$ be the set formed by substituting $x$ for $y$ in $T$, that is:

$R = \paren{T \setminus \set y} \cup \set x$


Then:

$\card{R \cap S} = \card{T \cap S} + 1$


Proof

We have:

\(\ds \card{R \cap S}\) \(=\) \(\ds \card{\paren{\paren{T \setminus \set y} \cup \set x} \cap S}\)
\(\ds \) \(=\) \(\ds \card{\paren{\paren{T \setminus \set y} \cap S } \cup \paren{ \set x \cap S} }\) Intersection Distributes over Union
\(\ds \) \(=\) \(\ds \card{\paren{\paren{T \setminus \set y} \cap S } \cup \set x}\) As $x \in S$
\(\ds \) \(=\) \(\ds \card{\paren{\paren{T \cap S} \setminus \paren{\set y \cap S} } \cup \set x}\) Set Intersection Distributes over Set Difference
\(\ds \) \(=\) \(\ds \card{\paren{\paren{T \cap S} \setminus \O } \cup \set x}\) As $y \notin S$
\(\ds \) \(=\) \(\ds \card{\paren{T \cap S} \cup \set x}\) Set Difference with Empty Set is Self
\(\ds \) \(=\) \(\ds \card{T \cap S} + \card {\set x}\) Cardinality of Pairwise Disjoint Set Union and $x \notin T$
\(\ds \) \(=\) \(\ds \card{T \cap S} + 1\) Cardinality of Singleton

$\blacksquare$