Finite Set Formed by Substitution has Larger Intersection
Jump to navigation
Jump to search
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Theorem
Let $S$ and $T$ be finite sets.
Let $x \in S \setminus T$.
Let $y \in T \setminus S$.
Let $R$ be the set formed by substituting $x$ for $y$ in $T$, that is:
- $R = \paren{T \setminus \set y} \cup \set x$
Then:
- $\card{R \cap S} = \card{T \cap S} + 1$
Proof
We have:
\(\ds \card{R \cap S}\) | \(=\) | \(\ds \card{\paren{\paren{T \setminus \set y} \cup \set x} \cap S}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \card{\paren{\paren{T \setminus \set y} \cap S } \cup \paren{ \set x \cap S} }\) | Intersection Distributes over Union | |||||||||||
\(\ds \) | \(=\) | \(\ds \card{\paren{\paren{T \setminus \set y} \cap S } \cup \set x}\) | As $x \in S$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \card{\paren{\paren{T \cap S} \setminus \paren{\set y \cap S} } \cup \set x}\) | Set Intersection Distributes over Set Difference | |||||||||||
\(\ds \) | \(=\) | \(\ds \card{\paren{\paren{T \cap S} \setminus \O } \cup \set x}\) | As $y \notin S$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \card{\paren{T \cap S} \cup \set x}\) | Set Difference with Empty Set is Self | |||||||||||
\(\ds \) | \(=\) | \(\ds \card{T \cap S} + \card {\set x}\) | Cardinality of Pairwise Disjoint Set Union and $x \notin T$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \card{T \cap S} + 1\) | Cardinality of Singleton |
$\blacksquare$