Finite Set Formed by Substitution has Same Cardinality

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $S$ and $T$ be finite sets.


Let $x \in S \setminus T$.

Let $y \in T \setminus S$.


Let $R$ be the set formed by substituting $x$ for $y$ in $T$, that is:

$R = \paren{T \setminus \set y} \cup \set x$


Then:

$\card R = \card T$


Proof

We have:

\(\ds \card R\) \(=\) \(\ds \card{\paren{T \setminus \set y} \cup \set x}\)
\(\ds \) \(=\) \(\ds \card{T \setminus \set y} + \card{\set x}\) Cardinality of Pairwise Disjoint Set Union
\(\ds \) \(=\) \(\ds \paren{\card T - \card{\set y} } + \card{\set x}\) Cardinality of Set Difference with Subset
\(\ds \) \(=\) \(\ds \paren{\card T - 1 } + 1\) Cardinality of Singleton
\(\ds \) \(=\) \(\ds \card T\) Canceling terms

$\blacksquare$