First Derivative of PGF of Negative Binomial Distribution/Second Form
Jump to navigation
Jump to search
Theorem
Let $X$ be a discrete random variable with the negative binomial distribution (second form) with parameters $n$ and $p$.
Then the first derivative of the PGF of $X$ with respect to $s$ is:
- $\dfrac \d {\d s} \map {\Pi_X} s = n p \paren {\dfrac {\paren {p s}^{n - 1} } {\paren {1 - q s}^{n + 1} } }$
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Proof
The Probability Generating Function of Negative Binomial Distribution (Second Form) is:
- $\map {\Pi_X} s = \paren {\dfrac {p s} {1 - q s} }^n$
We have that for a given negative binomial distribution, $n, p$ and $q$ are constant.
Thus we have:
\(\ds \frac \d {\d s} \map {\Pi_X} s\) | \(=\) | \(\ds \frac \d {\d s} \paren {\frac {p s} {1 - q s} }^n\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds n \paren {\frac {p s} {1 - q s} }^{n - 1} \frac \d {\d s} \paren {\frac {p s} {1 - q s} }\) | Power Rule for Derivatives and Chain Rule for Derivatives | |||||||||||
\(\ds \) | \(=\) | \(\ds n \paren {\frac {p s} {1 - q s} }^{n - 1} \paren {\frac {\paren {1 - q s} \frac \d {\d s} \paren {p s} - p s \frac \d {\d s} \paren {1 - q s} } {\paren {1 - q s}^2} }\) | Quotient Rule for Derivatives and Chain Rule for Derivatives | |||||||||||
\(\ds \) | \(=\) | \(\ds n \paren {\frac {p s} {1 - q s} }^{n - 1} \paren {\frac {\paren {1 - q s} p - p s \paren {-q} } {\paren {1 - q s}^2} }\) | Power Rule for Derivatives where $n = 1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds n \paren {\frac {p s} {1 - q s} }^{n - 1} \paren {\frac {p - p q s + p q s} {\paren {1 - q s}^2} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds n \paren {\frac {p s} {1 - q s} }^{n - 1} \paren {\frac p {\paren {1 - q s}^2} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds n p \paren {\frac {\paren {p s}^{n - 1} } {\paren {1 - q s}^{n + 1} } }\) |
Hence the result.
$\blacksquare$