Forward Difference of Falling Factorial

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $f: \R \to \R$ be a real function.

Let $\Delta$ denote the forward difference operator.


Let $x^{\underline m}$ be the $m$th falling factorial of $x$


Then:

$\map \Delta {x^{\underline m} } = m x^{\underline {m - 1} }$


Proof

From the definitions:

\(\ds \map \Delta {x^{\underline m} }\) \(=\) \(\ds \paren {x + 1}^{\underline m} - x^{\underline m}\) Definition of Forward Difference Operator
\(\ds \) \(=\) \(\ds \prod_{k \mathop = 0}^{m - 1} \paren {x + 1 - k} - \prod_{k \mathop = 0}^{m - 1} \paren {x - k}\) Definition of $m$th Falling Factorial
\(\ds \) \(=\) \(\ds \paren {x + 1} \prod_{k \mathop = 1}^{m - 1} \paren {x + 1 - k} - \paren {x - m + 1} \prod_{k \mathop = 0}^{m - 2} \paren {x - k}\)
\(\ds \) \(=\) \(\ds \paren {x + 1} \prod_{k \mathop = 0}^{m - 2} \paren {x - k} - \paren {x - m + 1} \prod_{k \mathop = 0}^{m - 2} \paren {x - k}\) Translation of Index Variable of Product
\(\ds \) \(=\) \(\ds \paren {\paren {x + 1} - \paren {x - m + 1} } \prod_{k \mathop = 0}^{m - 2} \paren {x - k}\)
\(\ds \) \(=\) \(\ds m x^{\underline{m - 1} }\) Definition of $m$th Falling Factorial

$\blacksquare$