Gödel's Incompleteness Theorems/First

From ProofWiki
Jump to navigation Jump to search


Let $T$ be the set of theorems of some recursive set of sentences in the language of arithmetic such that $T$ contains minimal arithmetic.

$T$ cannot be both consistent and complete.


If $T$ is both consistent and complete, it does not contain minimal arithmetic.


Aiming for a contradiction, suppose that such a $T$ is consistent and complete.

By the Undecidability Theorem, since $T$ is consistent and contains $Q$, it is not recursive.

But, by Complete Recursively Axiomatized Theories are Recursive, since $T$ is complete and is the set of theorems of a recursive set, it is recursive.

The result follows by Proof by Contradiction.


Also see

Source of Name

This entry was named for Kurt Friedrich Gödel.