Gaussian Integers are not Closed under Division
Jump to navigation
Jump to search
Theorem
The set of Gaussian integers $\Z \sqbrk i$ is not closed under division.
Proof
Let:
\(\ds x\) | \(=\) | \(\ds 1 + 2 i\) | ||||||||||||
\(\ds y\) | \(=\) | \(\ds 3 + 4 i\) |
Then:
\(\ds \leadsto \ \ \) | \(\ds x \div y\) | \(=\) | \(\ds \dfrac {1 + 2 i} {3 + 4 i}\) | Definition of Complex Division | ||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\paren {1 + 2 i} \paren {3 - 4 i} } {\paren {3 + 4 i} \paren {3 - 4 i} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {11 + 2 i} {\sqrt {3^2 + 4^2} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {11} 5 + \dfrac {2 i} 5\) | which is not a Gaussian integer |
$\blacksquare$
Sources
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Gaussian integer
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Gaussian integer