General Associativity Theorem/Formulation 3

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {S, \circ}$ be a semigroup.

Let $a_i$ denote elements of $S$.

Let $\circ$ be associative.

Let $n \in \Z$ be a positive integer such that $n \ge 3$.

Then all possible parenthesizations of the expression:

$a_1 \circ a_2 \circ \cdots \circ a_n$

are equivalent.


Proof

Let $\circ$ be associative.

It will be shown that any parenthesization of $a_1 \circ a_2 \circ \dots \circ a_n$ is equal to the left-associated expression:

$\paren {\paren {\paren {\cdots \paren {a_1 \circ a_2} \circ a_3} \circ \cdots} \circ a_n}$

The proof proceeds by induction on $n$.


Basis for the Induction

The base case, $n = 3$:

The product $a_1 \circ a_2 \circ a_3$ has two parenthesizations:

$P_1: a_1 \circ \paren {a_2 \circ a_3}$
$P_2: \paren {a_1 \circ a_2} \circ a_3$

$P_2$ is the left-associative parenthesization for $n = 3$.

From the associativity condition, $P_1$ and $P_2$ are identical.

This is the basis for the induction.


Induction Hypothesis

If for all $m < n$, all parenthesizations of the $m$-product are identical to its left-associated parenthesization:

$\paren {\paren {\paren {\cdots \paren {a_1 \circ a_2} \circ a_3} \circ \cdots} \circ a_m}$

then all parenthesizations of the $n$-product are identical to its left-associated parenthesization:

$\paren {\paren {\paren {\cdots \paren {a_1 \circ a_2} \circ a_3} \circ \cdots} \circ a_n}$

This is the induction hypothesis.


Induction Step

Let $P_i$ denote any parenthesization of $a_1 \circ a_2 \circ \dots \circ a_n$.

Then $P_i$ is always the product of two smaller products:

\(\displaystyle P_i\) \(=\) \(\displaystyle A \circ B\) outermost multiplication
\(\displaystyle \) \(=\) \(\displaystyle \paren {a_1 \circ a_2 \circ \cdots \circ a_m} \circ \paren {a_{m + 1} \circ a_{m + 2} \circ \cdots \circ a_n}\)
\(\displaystyle \) \(=\) \(\displaystyle \paren {\paren {\paren {\paren {\cdots \paren {a_1 \circ a_2} \circ a_3} \circ \cdots} \circ a_m} \circ \paren {\paren {\paren {\cdots \paren {a_{m + 1} \circ a_{m + 2} } \circ a_{m + 3} } \circ \cdots} \circ a_n} }\) Induction Hypothesis
\(\displaystyle \) \(=\) \(\displaystyle \paren {\paren {\paren {\cdots \paren {a_1 \circ a_2} \circ a_3} \circ \cdots} \circ a_{n - 1} } \circ a_n\) Definition of Associative Operation

By the Principle of Mathematical Induction, the proof is complete.

$\Box$


It follows that all parenthesizations of $a_1 \circ a_2 \circ \dots \circ a_n$ yield identical results.

So the theorem holds.

$\blacksquare$


Sources