Geometric Mean of two Positive Real Numbers is Between them

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a, b \in \R$ be real numbers such that $0 < a < b$.

Let $\map G {a, b}$ denote the geometric mean of $a$ and $b$.


Then:

$a < \map G {a, b} < b$


Proof

By definition of geometric mean:

$\map G {a, b} := \sqrt {a b}$

where $\sqrt {a b}$ specifically denotes the positive square root of $a$ and $b$.


Thus:

\(\ds a\) \(<\) \(\ds b\)
\(\ds \leadsto \ \ \) \(\ds a^2\) \(<\) \(\ds a b\)
\(\ds \leadsto \ \ \) \(\ds a\) \(<\) \(\ds \sqrt {a b}\)

and:

\(\ds a\) \(<\) \(\ds b\)
\(\ds \leadsto \ \ \) \(\ds a b\) \(<\) \(\ds b^2\)
\(\ds \leadsto \ \ \) \(\ds \sqrt {a b}\) \(<\) \(\ds b\)

$\blacksquare$