Group Action determines Bijection

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $*$ be a group action of $G$ on $X$.

Then each $g \in G$ determines a bijection $\phi_g: X \to X$ given by:

$\map {\phi_g} x = g * x$

Its inverse is:

$\phi_{g^{-1} }: X \to X$.


These bijection are sometimes called transformations of $X$.


Proof

Proof of Injectivity

Let $x, y \in X$

Then:

\(\ds \map {\phi_g} x\) \(=\) \(\ds \map {\phi_g} y\)
\(\ds \leadsto \ \ \) \(\ds g * x\) \(=\) \(\ds g * y\)
\(\ds \leadsto \ \ \) \(\ds g^{-1} * \paren {g * x}\) \(=\) \(\ds g^{-1} * \paren {g * y}\)
\(\ds \leadsto \ \ \) \(\ds \paren {g^{-1} g} * x\) \(=\) \(\ds \paren {g^{-1} g} * y\)
\(\ds \leadsto \ \ \) \(\ds e * x\) \(=\) \(\ds e * y\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds y\)


Thus $\phi_g$ is an injection.

$\Box$


Proof of Surjectivity

Let $x \in X$.

Then:

\(\ds x\) \(=\) \(\ds e * x\)
\(\ds \) \(=\) \(\ds \paren {g g^{-1} } * x\)
\(\ds \) \(=\) \(\ds g * \paren {g^{-1} * x}\)
\(\ds \) \(=\) \(\ds \map {\phi_g} y\) where $y = g^{-1} * x \in X$


Thus a group action is a surjection.

$\Box$


So a group action is an injection and a surjection and therefore a bijection.

$\blacksquare$


Also see