Quaternion Group/Group Presentation
(Redirected from Group Presentation of Quaternion Group)
Jump to navigation
Jump to search
Group Presentation of Quaternion Group
The group presentation of the quaternion group is given by:
- $\Dic 2 = \gen {a, b: a^4 = e, b^2 = a^2, a b a = b}$
Proof
Let $G = \gen {a, b: a^4 = e, b^2 = a^2, a b a = b}$.
It is to be demonstrated that $\Dic 2$ is isomorphic to $G$.
Consider the Cayley table for $\Dic 2$:
- $\begin{array}{r|rrrrrrrr} & e & a & a^2 & a^3 & b & a b & a^2 b & a^3 b \\ \hline e & e & a & a^2 & a^3 & b & a b & a^2 b & a^3 b \\ a & a & a^2 & a^3 & e & a b & a^2 b & a^3 b & b \\ a^2 & a^2 & a^3 & e & a & a^2 b & a^3 b & b & a b \\ a^3 & a^3 & e & a & a^2 & a^3 b & b & a b & a^2 b \\ b & b & a^3 b & a^2 b & a b & a^2 & a & e & a^3 \\ a b & a b & b & a^3 b & a^2 b & a^3 & a^2 & a & e \\ a^2 b & a^2 b & a b & b & a^3 b & e & a^3 & a^2 & a \\ a^3 b & a^3 b & a^2 b & a b & b & a & e & a^3 & a^2 \end{array}$
We have that:
- $a^4 = e$
- $b^2 = a^2$
- $\paren {a b} a = b$
demonstrating that $\Dic 2$ has the same group presentation as $G$.
Hence the result.
$\blacksquare$
Sources
- 1996: John F. Humphreys: A Course in Group Theory ... (previous) ... (next): Chapter $4$: Subgroups: Exercise $4$
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): generator: 2.
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): generator: 2.