Hausdorff-Besicovitch Dimension is Well-Defined

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $F \subseteq \R^n$ be a subset of the $n$-dimensional Euclidean space.

Let $\map {\HH^s} F$ be the $s$-dimensional Hausdorff measure on $\R^n$ of $F$ for each $s \in \R_{\ge 0}$.

Then:

\(\ds \) \(\) \(\ds \inf \set {s \in \R_{\ge 0} : \map {\HH^s} F = 0}\)
\(\ds \) \(=\) \(\ds \sup \set {s \in \R_{\ge 0} : \map {\HH^s} F = +\infty}\)
\(\ds \) \(\in\) \(\ds \closedint 0 n\)

In particular, the Hausdorff-Besicovitch dimension is well-defined.


Proof