Hensel's Lemma/P-adic Integers/Lemma 7

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\Z_p$ be the $p$-adic integers for some prime $p$.

Let $T$ be the set of $p$-adic digits.

Let $k \in \N_{>0}$.


Then:

$x \in \Z_p \implies \exists y \in T : y p^k \equiv x p^k \pmod {p^{k+1}\Z_p}$


Proof

Let $x \in \Z_p$.

From P-adic Integer is Limit of Unique P-adic Expansion, let:

$x = \ds \sum_{n \mathop = 0}^\infty d_n p^n$


We have:

\(\ds x - d_0\) \(=\) \(\ds \paren{d_0 + d_1p + d_2p^2 + d_3p^3 + \ldots } - d_0\)
\(\ds \) \(=\) \(\ds \paren{d_1p + d_2p^2 + d_3p^3 + \ldots }\) $d_0$ terms cancel
\(\ds \) \(=\) \(\ds p \paren{d_1 + d_2p + d_3p^2 + \ldots }\) Factor $p$ from each term
\(\ds \) \(\in\) \(\ds p\Z_p\) $d_1 + d_2p + d_3p^2 + \ldots$ is the $p$-adic expansion of a $p$-adic integer
\(\ds \leadsto \ \ \) \(\ds xp^k - d_0p^k\) \(=\) \(\ds \paren{x - d_0}p^k\)
\(\ds \) \(\in\) \(\ds p^{k+1}\Z_p\)
\(\ds \leadsto \ \ \) \(\ds xp^k\) \(\equiv\) \(\ds d_0p^k \pmod {p^{k+1}\Z_p}\) Definition of Congruence Modulo an Ideal


Let $y = d_0$.

The result follows.

$\blacksquare$