Hilbert Proof System Instance 2 Independence Results

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathscr H_2$ be Instance 2 of the Hilbert proof systems.


Then the following independence results hold:


Independence of $(A1)$

Axiom $(A1)$ is independent from $(A2)$, $(A3)$, $(A4)$.


Independence of $(A2)$

Axiom $(A2)$ is independent from $(A1)$, $(A3)$, $(A4)$.


Independence of $(A3)$

Axiom $(A3)$ is independent from $(A1)$, $(A2)$, $(A4)$.


Independence of $(A4)$

Axiom $(A4)$ is independent from $(A1)$, $(A2)$, $(A3)$.


$RST \, 4$ is Derivable

Rule of inference $RST \, 4$ is derivable from $RST \, 1, RST \, 2, RST \, 3$ and the axioms $(A1)$ through $(A4)$.


Sources