Homogeneous Cartesian Coordinates/Examples/Arbitrary Example 1

From ProofWiki
Jump to navigation Jump to search

Examples of Homogeneous Cartesian Coordinates

Consider the polynomial equation $\map P {x, y}$:

$2 x^2 + x + 7 = y$

This can be expressed in homogeneous Cartesian coordinates $\map P {X, Y, Z}$ as:

$2 X^2 + X Z + 7 Z^2 = Y Z$


Proof

\(\ds 2 x^2 + x + 7\) \(=\) \(\ds 7\)
\(\ds \leadsto \ \ \) \(\ds 2 \paren {\dfrac X Z}^2 + \dfrac X Z + 7\) \(=\) \(\ds \dfrac Y Z\) substituting $x \gets \dfrac X Z$, $y \gets \dfrac Y Z$
\(\ds \leadsto \ \ \) \(\ds 2 X^2 + X Z + 7 Z^2\) \(=\) \(\ds Y Z\) multiplying both sides by $Z^2$

We confirm this is a homogeneous equation:

\(\ds 2 \paren {k X}^2 + \paren {k X} \paren {k Z} + 7 \paren {k Z}^2\) \(=\) \(\ds \paren {k Y} \paren {k Z}\)
\(\ds \leadsto \ \ \) \(\ds k^2 \paren {2 X^2 + X Z + 7 Z^2}\) \(=\) \(\ds k^2 Y Z\)

and homogeneity has been confirmed.

$\blacksquare$


Sources