Homogeneous Cartesian Coordinates/Examples/Arbitrary Example 1
Jump to navigation
Jump to search
Examples of Homogeneous Cartesian Coordinates
Consider the polynomial equation $\map P {x, y}$:
- $2 x^2 + x + 7 = y$
This can be expressed in homogeneous Cartesian coordinates $\map P {X, Y, Z}$ as:
- $2 X^2 + X Z + 7 Z^2 = Y Z$
Proof
\(\ds 2 x^2 + x + 7\) | \(=\) | \(\ds 7\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds 2 \paren {\dfrac X Z}^2 + \dfrac X Z + 7\) | \(=\) | \(\ds \dfrac Y Z\) | substituting $x \gets \dfrac X Z$, $y \gets \dfrac Y Z$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds 2 X^2 + X Z + 7 Z^2\) | \(=\) | \(\ds Y Z\) | multiplying both sides by $Z^2$ |
We confirm this is a homogeneous equation:
\(\ds 2 \paren {k X}^2 + \paren {k X} \paren {k Z} + 7 \paren {k Z}^2\) | \(=\) | \(\ds \paren {k Y} \paren {k Z}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds k^2 \paren {2 X^2 + X Z + 7 Z^2}\) | \(=\) | \(\ds k^2 Y Z\) |
and homogeneity has been confirmed.
$\blacksquare$
Sources
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): homogeneous coordinates
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): homogeneous coordinates