Hyperbolic Sine of Complex Number

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a$ and $b$ be real numbers.

Let $i$ be the imaginary unit.

Then:

$\sinh \paren {a + b i} = \sinh a \cos b + i \cosh a \sin b$

where:

$\sin$ denotes the real sine function
$\cos$ denotes the real cosine function
$\sinh$ denotes the hyperbolic sine function
$\cosh$ denotes the hyperbolic cosine function.


Proof 1

\(\ds \sinh \paren {a + b i}\) \(=\) \(\ds \sinh a \cosh \paren {b i} + \cosh a \sinh \paren {b i}\) Hyperbolic Sine of Sum
\(\ds \) \(=\) \(\ds \sinh a \cos b + \cosh a \sin \paren {b i}\) Cosine in terms of Hyperbolic Cosine
\(\ds \) \(=\) \(\ds \sinh a \cos b + i \cosh a \sin b\) Sine in terms of Hyperbolic Sine

$\blacksquare$


Proof 2

\(\ds \sinh a \cos b + i \cosh a \sin b\) \(=\) \(\ds \frac {e^a - e^{-a} } 2 \frac {e^{i b} + e^{-i b} } 2 + i \frac {e^a + e^{-a} } 2 \frac {e^{i b} - e^{-i b} } {2 i}\) Definition of Hyperbolic Sine, Euler's Cosine Identity, Definition of Hyperbolic Cosine, Euler's Sine Identity
\(\ds \) \(=\) \(\ds \frac {e^{a + i b} - e^{-a + i b} + e^{a - i b} - e^{-a - i b} + e^{a + i b} + e^{-a + i b} - e^{a - i b} - e^{-a - i b} } 4\) simplifying
\(\ds \) \(=\) \(\ds \frac {e^{\paren {a + b i} } - e^{-\paren {a + b i} } } 2\) simplifying
\(\ds \) \(=\) \(\ds \sinh \paren {a + b i}\) Definition of Hyperbolic Sine

$\blacksquare$


Also see