Ideal of Ring/Examples/Set of Even Integers
Jump to navigation
Jump to search
Example of Ideal of Ring
The set $2 \Z$ of even integers forms an ideal of the ring of integers.
Proof
Let $x \in 2 \Z$.
Then:
- $\forall y \in \Z: x y \in 2 \Z$
and:
- $\forall y \in \Z: y x \in 2 \Z$
Hence the result by definition of ideal.
$\blacksquare$
Sources
- 1978: Thomas A. Whitelaw: An Introduction to Abstract Algebra ... (previous) ... (next): $\S 58$. Ideals