Image of Element under Cartesian Product of Subsets

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $S$ and $T$ be sets.

Let $A \subseteq S$ and $B \subseteq T$.

Let $\RR$ be the relation defined by the Cartesian product $A \times B$.


Then:

$\forall x \in A: \map \RR x = B$

Proof

We have:

\(\ds \forall x \in A: \, \) \(\ds \map \RR s\) \(=\) \(\ds \set {t \in T: \tuple {s, t} \in \RR}\) Definition of Image of Element under Relation
\(\ds \) \(=\) \(\ds \set {t \in T: \tuple {s, t} \in A \times B}\) Definition of $\RR$
\(\ds \) \(=\) \(\ds \set {t \in T: s \in A, t \in B}\) Definition of Cartesian Product
\(\ds \) \(=\) \(\ds \set {t \in T: t \in B}\) as $s \in A$
\(\ds \) \(=\) \(\ds B\) as $B \subseteq T$

$\blacksquare$