Image of Subset under Composite Relation
Jump to navigation
Jump to search
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Theorem
Let $\RR_1 \subseteq S_1 \times T_1$ and $\RR_2 \subseteq S_2 \times T_2$ be relations.
Let $\RR_2 \circ \RR_1 \subseteq S_1 \times T_2$ be the composition of $\RR_1$ and $\RR_2$.
Let $A \subseteq S_1$.
Then:
- $\RR_2 \sqbrk {\RR_1 \sqbrk A \cap S_2} = \paren{\RR_2 \circ \RR_1} \sqbrk A$
Proof
We have:
\(\ds \forall z \in T_2: \, \) | \(\ds z \in \RR_2 \sqbrk {\RR_1 \sqbrk A \cap S_2}\) | \(\leadstoandfrom\) | \(\ds \exists y \in \RR_1 \sqbrk A \cap S_2 : \tuple{y, z} \in R_2\) | Definition of Image of Subset under Relation | ||||||||||
\(\ds \) | \(\leadstoandfrom\) | \(\ds \exists y \in T_1 \cap S_2 : \exists x \in A : \tuple{x,y} \in R_1 : \tuple{y, z} \in R_2\) | Definition of Image of Subset under Relation | |||||||||||
\(\ds \) | \(\leadstoandfrom\) | \(\ds \exists x \in A : \exists y \in T_1 \cap S_2 : \tuple{x,y} \in R_1 : \tuple{y, z} \in R_2\) | ||||||||||||
\(\ds \) | \(\leadstoandfrom\) | \(\ds \exists x \in A : \tuple{x,z} \in R_2 \circ R_1\) | Definition of Composite Relation | |||||||||||
\(\ds \) | \(\leadstoandfrom\) | \(\ds z \in \paren{R_2 \circ R_1} \sqbrk A\) | Definition of Image of Subset under Relation |
$\blacksquare$