Image of Union under Relation/General Result

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ and $T$ be sets.

Let $\RR \subseteq S \times T$ be a relation.

Let $\powerset S$ be the power set of $S$.

Let $\mathbb S \subseteq \powerset S$.


Then:

$\ds \RR \sqbrk {\bigcup \mathbb S} = \bigcup_{X \mathop \in \mathbb S} \RR \sqbrk X$


Proof

\(\ds t\) \(\in\) \(\ds \RR \sqbrk {\bigcup \mathbb S}\)
\(\ds \leadstoandfrom \ \ \) \(\ds \exists s \in \bigcup \mathbb S: \, \) \(\ds t\) \(\in\) \(\ds \map \RR s\) Image of Subset under Relation equals Union of Images of Elements
\(\ds \leadstoandfrom \ \ \) \(\ds \exists X \in \mathbb S: \exists s \in X: \, \) \(\ds t\) \(\in\) \(\ds \map \RR s\) Definition of Union of Set of Sets
\(\ds \leadstoandfrom \ \ \) \(\ds \exists X \in \mathbb S: \, \) \(\ds t\) \(\in\) \(\ds \RR \sqbrk X\) Definition of Image of Subset under Relation
\(\ds \leadstoandfrom \ \ \) \(\ds t\) \(\in\) \(\ds \bigcup_{X \mathop \in \mathbb S} \RR \sqbrk X\) Definition of Union of Set of Sets

$\blacksquare$