Implicit Function Theorem

From ProofWiki
Jump to navigation Jump to search

Theorem

The Implicit Function Theorem gives conditions on derivatives which ensure that an implicitly defined set is the graph of a function.


Real Functions

Let $n$ and $k$ be natural numbers.

Let $\Omega \subset \R^{n + k}$ be open.

Let $f: \Omega \to \R^k$ be continuous.

Let the partial derivatives of $f$ with respect to $\R^k$ be continuous.

Let $\tuple {a, b} \in \Omega$, with $a\in \R^n$ and $b\in \R^k$.

Let $\map f {a, b} = 0$.

For $\tuple {x_0, y_0} \in \Omega$, let $D_2 \map f {x_0, y_0}$ denote the total derivative of the function $y \mapsto \map f {x_0, y}$ at $y_0$.

Let the linear map $D_2 \map f {a, b}$ be invertible.


Then there exist neighborhoods $U \subset \Omega$ of $a$ and $V \subset \R^k$ of $b$ such that there exists a unique function $g: U \to V$ such that $\map f {x, \map g x} = 0$ for all $x \in U$.

Moreover, $g$ is continuous.


Examples

Unit Circle

Consider the Equation of Unit Circle for the unit circle:

$x^2 + y^2 = 1$

This is the graph of a function near all points where $y = 0$.


Also see


Sources