Increasing Martingale Theorem
Theorem
Let $\struct {X, \Sigma, \mu}$ be a probability space.
Let $f$ be a $\mu$-integrable function.
Given sub-$\sigma$-algebra $\CC \subseteq \Sigma$, let $\expect {f \mid \CC}$ denote the conditional expectation of $f$ on $\CC$.
Let $\sequence {\FF_n}_{n \mathop \in \N}$ be a filtration of $\Sigma$.
Let $\FF_\infty$ be the limit of $\sequence {\FF_n}_{n \mathop \in \N}$.
Then:
- $\ds \lim_{n \mathop \to \infty} \expect {f \mid \FF_n} = \expect {f \mid \FF_\infty}$
holds in $L^1$ norm, and $\mu$-almost surely.
Proof
By Tower Property of Conditional Expectation:
- $\expect {f \mid \FF_n} = \expect {\expect {f \mid \FF_\infty} \mid \FF_n}$
Let $\tilde f := \expect {f \mid \FF_\infty}$.
Then we need to show that:
- $\ds \lim_{n \mathop \to \infty} \expect {\tilde f \mid \FF_n} = \tilde f$
holds in $L^1$ norm, and $\mu$-almost surely.
To this end, let $\epsilon > 0$.
By Filtration's Lp Spaces are Dense in Limit Filtration's Lp Space, there exist:
- $N \in \N$
- $g \in \map {L^1} {X, \FF_N, \mu}$
such that:
- $(1):\quad \norm {\tilde f - g}_1 \le \epsilon$
Then, for all $n \ge N$:
\(\ds \norm {\expect {\tilde f \mid \FF_n} - \tilde f}_1\) | \(=\) | \(\ds \norm {\expect {\tilde f - g \mid \FF_n} - \paren {\tilde f - g} }_1\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \norm {\expect {\tilde f - g \mid \FF_n} }_1 + \norm {\tilde f - g}_1\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds 2 \norm {\tilde f - g}_1\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds 2 \epsilon\) |
Thus:
- $\ds \lim_{n \mathop \to \infty} \norm {\expect {\tilde f \mid \FF_n} - \tilde f}_1 = 0$
$\Box$
On the other hand:
\(\ds \map \mu {\limsup_{n \mathop \to \infty} \size {\expect {\tilde f \mid \FF_n} - \tilde f} > \sqrt \epsilon}\) | \(=\) | \(\ds \map \mu {\limsup_{n \mathop \to \infty} \size {\expect {\tilde f - g \mid \FF_n} - \paren {\tilde f - g} } > \sqrt \epsilon}\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \map \mu {\set {\sup_{n \mathop \in \N} \size {\expect {\tilde f - g \mid \FF_n} } > \frac {\sqrt \epsilon} 2 } \cup \set { \size { \tilde f - g} > \frac {\sqrt \epsilon} 2 } }\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \map \mu {\sup_{n \mathop \in \N} \size {\expect {\tilde f - g \mid \FF_n} } > \frac {\sqrt \epsilon} 2 } + \map \mu { \size { \tilde f - g} > \frac {\sqrt \epsilon} 2 }\) | ||||||||||||
\(\text {(2)}: \quad\) | \(\ds \) | \(\le\) | \(\ds \map \mu {\sup_{n \mathop \in \N} \size {\expect {\tilde f - g \mid \FF_n} } > \frac {\sqrt \epsilon} 2 } + \frac 2 {\sqrt \epsilon} \norm {\tilde f - g}_1\) | Markov's Inequality |
Observe:
\(\ds \map \mu { \sup_{n \in \N} \size{ \expect { {\tilde f - g} \mid \FF_n} } \ge \frac {\sqrt \epsilon} 2}\) | \(\le\) | \(\ds \map \mu { \sup_{n \in \N} \expect {\size {\tilde f - g} \mid \FF_n} \ge \frac {\sqrt \epsilon} 2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{m \to \infty} \map \mu { \sup_{0 \le n \le m} \expect {\size {\tilde f - g} \mid \FF_n} \ge \frac {\sqrt \epsilon} 2}\) | Measure of Limit of Increasing Sequence of Measurable Sets | |||||||||||
\(\ds \) | \(\le\) | \(\ds \lim_{m \to \infty} \frac 2 {\sqrt \epsilon} \expect {\expect {\size {\tilde f - g} \mid \FF_m} }\) | Doob's Maximal Inequality | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 2 {\sqrt \epsilon} \expect {\size {\tilde f - g} }\) | Definition of Conditional Expectation on Sigma-Algebra | |||||||||||
\(\text {(3)}: \quad\) | \(\ds \) | \(=\) | \(\ds \frac 2 {\sqrt \epsilon} \norm {\tilde f - g}_1\) | Definition of $L^1$ norm |
From $(2)$ and $(3)$:
\(\ds \map \mu {\limsup_{n \mathop \to \infty} \size {\expect {\tilde f \mid \FF_n} - \tilde f} > \sqrt \epsilon}\) | \(\le\) | \(\ds \frac 4 {\sqrt \epsilon} \norm {\tilde f - g}_1\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds 4 \sqrt \epsilon\) | by $(1)$ |
Therefore:
\(\ds \map \mu {\limsup_{n \mathop \to \infty} \size {\expect {\tilde f \mid \FF_n} - \tilde f} > 0}\) | \(=\) | \(\ds \lim_{\epsilon \mathop \to 0} \map \mu {\limsup_{n \mathop \to \infty} \size {\expect {\tilde f \mid \FF_n} - \tilde f} > \sqrt \epsilon}\) | Measure of Limit of Increasing Sequence of Measurable Sets | |||||||||||
\(\ds \) | \(\le\) | \(\ds \lim_{\epsilon \mathop \to 0} 4 \sqrt \epsilon\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
![]() | This needs considerable tedious hard slog to complete it. In particular: details To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Finish}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Sources
- 2011: Manfred Einsiedler and Thomas Ward: Ergodic Theory: with a view towards Number Theory $5.2:$ Martingales