Integral Representation of Riemann Zeta Function in terms of Gamma Function/Corollary

From ProofWiki
Jump to navigation Jump to search

Corollary to Integral Representation of Riemann Zeta Function in terms of Gamma Function

For $\Re \paren s > 1$, the Riemann Zeta function is given by:

$\ds \map \zeta s = \frac 1 {\map \Gamma s} \int_0^1 \frac {\paren {\map \ln {\dfrac 1 u} }^{s - 1} } {1 - u} \rd u$

where $\Gamma$ is the Gamma function.


Proof

\(\ds \map \zeta {s}\) \(=\) \(\ds \frac 1 {\map \Gamma s} \int_0^\infty \frac {t^{s - 1} } {e^t - 1} \rd t\) Integral Representation of Riemann Zeta Function in terms of Gamma Function
\(\ds \) \(=\) \(\ds \frac 1 {\map \Gamma s} \int_0^\infty \frac {t^{s - 1} } {e^t - 1} \times \dfrac {e^{-t} } {e^{-t} }\rd t\) multiplying by 1
\(\ds \) \(=\) \(\ds \frac 1 {\map \Gamma s} \int_0^\infty \frac {t^{s - 1} e^{-t} } {1 - e^{-t} } \rd t\)
\(\ds \) \(=\) \(\ds \frac 1 {\map \Gamma s} \int_1^0 \frac {\paren {\map \ln {\dfrac 1 u} }^{s - 1} } {1 - u} \paren {-\rd u }\) substituting $e^{-t} \to u$; $t \to \map \ln {\dfrac 1 u} $ and $-e^{-t}\rd t \to \rd u$
\(\ds \) \(=\) \(\ds \frac 1 {\map \Gamma s} \int_0^1 \frac {\paren {\map \ln {\dfrac 1 u} }^{s - 1} } {1 - u} \rd u\) reversing limits of integration

$\blacksquare$