Integral of Integrable Function is Monotone
Jump to navigation
Jump to search
Theorem
Let $\struct {X, \Sigma, \mu}$ be a measure space.
Let $f, g: X \to \overline \R$ be $\mu$-integrable functions.
Suppose that $f \le g$ pointwise.
Then:
- $\ds \int f \rd \mu \le \int g \rd \mu$
Proof
Since:
- $f \le g$
we have that $g - f$ is well-defined with:
- $g - f \ge 0$
From Integral of Integrable Function is Additive: Corollary $2$, we have:
- $g - f$ is $\mu$-integrable
with:
- $\ds \int \paren {g - f} \rd \mu = \int g \rd \mu - \int f \rd \mu$
Since:
- $\ds \int \paren {g - f} \rd \mu \ge 0$
we have:
- $\ds \int g \rd \mu - \int f \rd \mu \ge 0$
This gives:
- $\ds \int g \rd \mu \ge \int f \rd \mu$
$\blacksquare$
Sources
- 2005: René L. Schilling: Measures, Integrals and Martingales ... (previous) ... (next): $10.4 \ \text{(iv)}$