Integral to Infinity of Sine p x Cosine q x over x/Mistake
Jump to navigation
Jump to search
Source Work
1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables
- Chapter $15$: Definite Integrals
- Definite Integrals involving Trigonometric Functions: $15.34$
2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.)
- Chapter $18$: Definite Integrals
- Definite Integrals involving Trigonometric Functions: $18.34$
Mistake
- $\ds \int_0^\infty \frac {\sin p x \cos q x} x \rd x = \begin {cases} 0 & : p > q > 0 \\ \\ \dfrac \pi 2 & : 0 < p < q \\ \\ \dfrac \pi 4 & : p = q > 0 \end {cases}$
Correction
As demonstrated in Integral to Infinity of $\dfrac {\sin p x \cos q x} x$, this is incorrect.
It should be:
- $\ds \int_0^\infty \frac {\sin p x \cos q x} x \rd x = \begin {cases} \dfrac \pi 2 & : p > q > 0 \\ \\ 0 & : 0 < p < q \\ \\ \dfrac \pi 4 & : p = q > 0 \\ \end {cases}$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 15$: Definite Integrals involving Trigonometric Functions: $15.34$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 18$: Definite Integrals: Definite Integrals involving Trigonometric Functions: $18.34$