Intersection of Power Sets

From ProofWiki
Jump to: navigation, search


The intersection of the power sets of two sets $S$ and $T$ is equal to the power set of their intersection:

$\displaystyle \mathcal P \left({S}\right) \cap \mathcal P \left({T}\right) = \mathcal P \left({S \cap T}\right)$


\(\displaystyle X\) \(\in\) \(\displaystyle \mathcal P \left({S \cap T}\right)\)                    
\(\displaystyle \iff\) \(\displaystyle X\) \(\subseteq\) \(\displaystyle S \cap T\)          Definition of Power Set          
\(\displaystyle \iff\) \(\displaystyle X\) \(\subseteq\) \(\displaystyle S \land X \subseteq T\)          Definition of intersection          
\(\displaystyle \iff\) \(\displaystyle X\) \(\in\) \(\displaystyle \mathcal P \left({S}\right) \land X \in \mathcal P \left({T}\right)\)          Definition of Power Set          
\(\displaystyle \iff\) \(\displaystyle X\) \(\in\) \(\displaystyle \mathcal P \left({S}\right) \cap \mathcal P \left({T}\right)\)          Definition of intersection