Inverse Hyperbolic Sine is Odd Function

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x \in \R$.

Then:

$\map \arsinh {-x} = -\arsinh x$

where $\arsinh$ denotes the inverse hyperbolic sine function.


Proof

\(\ds \map \arsinh {-x}\) \(=\) \(\ds y\)
\(\ds \leadstoandfrom \ \ \) \(\ds -x\) \(=\) \(\ds \sinh y\) Definition 1 of Inverse Hyperbolic Sine
\(\ds \leadstoandfrom \ \ \) \(\ds x\) \(=\) \(\ds -\sinh y\)
\(\ds \leadstoandfrom \ \ \) \(\ds x\) \(=\) \(\ds \map \sinh {-y}\) Hyperbolic Sine Function is Odd
\(\ds \leadstoandfrom \ \ \) \(\ds \arsinh x\) \(=\) \(\ds -y\) Definition 1 of Inverse Hyperbolic Sine
\(\ds \leadstoandfrom \ \ \) \(\ds -\arsinh x\) \(=\) \(\ds y\)

$\blacksquare$


Sources