Inverse Image Mapping of Codomain is Preimage Set of Relation

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ and $T$ be sets.

Let $\powerset S$ and $\powerset T$ be their power sets.

Let $\RR \subseteq S \times T$ be a relation on $S \times T$.

Let $\RR^\gets: \powerset T \to \powerset S$ be the inverse image mapping of $\RR$:

$\forall X \in \powerset S: \map {\RR^\to} X = \begin {cases} \set {t \in T: \exists s \in X: \tuple {x, t} \in \RR} & : X \ne \O \\ \O & : X = \O \end {cases}$


Then:

$\map {\RR^\gets} T = \Preimg \RR$

where $\Preimg \RR$ is the preimage of $\RR$.


Proof

\(\ds x\) \(\in\) \(\ds \map {\RR^\gets} T\)
\(\ds \leadstoandfrom \ \ \) \(\ds \exists x \in S: \, \) \(\ds \tuple {x, y}\) \(\in\) \(\ds \RR\) Definition of Inverse Image Mapping of Mapping
\(\ds \leadstoandfrom \ \ \) \(\ds x\) \(\in\) \(\ds \Preimg \RR\) Definition of Preimage of Relation

$\blacksquare$