L'Hôpital's Rule/Examples/x^2 - 4 over 2 x - 4

From ProofWiki
Jump to navigation Jump to search

Example of Use of L'Hôpital's Rule

Let $f: \R \to \R$ and $g: \R \to \R$ be real functions defined as:

\(\ds \forall x \in \R: \, \) \(\ds \map f x\) \(=\) \(\ds x^2 - 4\)
\(\ds \map g x\) \(=\) \(\ds 2 x - 4\)

Then:

$\ds \lim_{x \mathop \to 2} \dfrac {\map f x} {\map g x} = 2$


Proof

We note that $\valueat {\dfrac {\map f x} {\map g x} } {x \mathop = 2}$ is undefined.

Hence we observe that L'Hôpital's Rule may be applicable.


We have that:

\(\ds \map {f'} x\) \(=\) \(\ds \dfrac \d {\d x} x^2 - 4\)
\(\ds \) \(=\) \(\ds 2 x\) Power Rule for Derivatives
\(\ds \map {g'} x\) \(=\) \(\ds 2 x - 4\)
\(\ds \) \(=\) \(\ds 2\) Power Rule for Derivatives


Thus both $\ds \lim_{x \mathop \to 2} \map {f'} 2$ and $\ds \lim_{x \mathop \to 2} \map {g'} 2$ exist, and we can indeed continue:

\(\ds \lim_{x \mathop \to 2} \dfrac {\map f x} {\map g x}\) \(=\) \(\ds \lim_{x \mathop \to 2} \dfrac {\map {f'} x} {\map {g'} x}\) L'Hôpital's Rule
\(\ds \) \(=\) \(\ds \lim_{x \mathop \to 2} \dfrac {2 x} 2\)
\(\ds \) \(=\) \(\ds \dfrac 4 2\)
\(\ds \) \(=\) \(\ds 2\)

$\blacksquare$


Sources