Larger Set has Larger Set Difference
Jump to navigation
Jump to search
Theorem
Let $U, V$ be finite sets.
Let $\card V < \card U$.
Then:
- $\card {V \setminus U} < \card {U \setminus V}$
Proof
We have:
\(\ds \card {U \setminus V}\) | \(=\) | \(\ds \card U - \card {U \cap V}\) | Cardinality of Set Difference | |||||||||||
\(\ds \) | \(>\) | \(\ds \card V - \card {U \cap V}\) | As $\card V < \card U$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \card {V \setminus U}\) | Cardinality of Set Difference |
$\blacksquare$