Largest Integer Expressible by 3 Digits/Number of Digits
Jump to navigation
Jump to search
Theorem
- $9^{9^9}$ has $369 \, 693 \, 100$ digits when expressed in decimal notation.
Proof
Let $n$ be the number of digits in $9^{9^9}$
From Number of Digits in Number:
- $n = 1 + \floor {\map {\log_{10} } {9^{9^9} } }$
where $\floor {\ldots}$ denotes the floor function.
Then:
\(\ds \map {\log_{10} } {9^{9^9} }\) | \(\approx\) | \(\ds 369 \, 693 \, 099 \cdotp 63157 \, 03685 \, 87876 \, 1\) | Largest Integer Expressible by 3 Digits: Logarithm Base 10 | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds n\) | \(=\) | \(\ds 1 + \floor {369 \, 693 \, 099 \cdotp 63157 \, 03685 \, 87876 \, 1}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds 1 + 369 \, 693 \, 099\) | Definition of Floor Function | |||||||||||
\(\ds \) | \(=\) | \(\ds 369 \, 693 \, 100\) |
$\blacksquare$
Historical Note
The number of digits in $9^{9^9}$ was demonstrated to be $369 \, 693 \, 100$ in $1906$ by Charles-Ange Laisant.
Sources
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): $9^{9^9}$
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $9^{9^9}$