Legendre Symbol of Congruent Integers

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $p$ be a odd prime.

Let $a, b \in \Z$ be such that $a \equiv b \pmod p$.


Then:

$\paren {\dfrac a p} = \paren {\dfrac b p}$

where $\paren {\dfrac a p}$ is the Legendre symbol.


Proof

\(\ds \paren {\frac a p}\) \(=\) \(\ds a^{\frac {p - 1} 2} \bmod p\) Definition 2 of Legendre Symbol
\(\ds \) \(=\) \(\ds b^{\frac {p - 1} 2} \bmod p\) Congruence of Powers
\(\ds \) \(=\) \(\ds \paren {\frac b p}\) Definition 2 of Legendre Symbol

$\blacksquare$