Limit of Cumulative Distribution Function at Positive Infinity/Lemma
Jump to navigation
Jump to search
Further research is required in order to fill out the details. In particular: See if this is a particular case if a more general theorem You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by finding out more. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Research}} from the code. |
Lemma
Let $\sequence {x_n}_{n \mathop \in \N}$ be an increasing with $x_n \to \infty$.
Then:
- $\ds \bigcup_{n \mathop = 1}^\infty \hointl {-\infty} {x_n} = \R$
Proof
Clearly we have:
- $\ds \bigcup_{n \mathop = 1}^\infty \hointl {-\infty} {x_n} \subseteq \R$
So we only need to show that:
- $\ds \R \subseteq \bigcup_{n \mathop = 1}^\infty \hointl {-\infty} {x_n}$
Let $x \in \R$.
From the definition of a sequence diverging to $\infty$:
- there exists $N \in \N$ such that $x_N > x$.
So:
- $x \in \hointl {-\infty} {x_N}$
giving:
- $\ds x \in \bigcup_{n \mathop = 1}^\infty \hointl {-\infty} {x_n}$
So:
- $\ds \R \subseteq \bigcup_{n \mathop = 1}^\infty \hointl {-\infty} {x_n}$
from the definition of subset.
So, we have:
- $\ds \bigcup_{n \mathop = 1}^\infty \hointl {-\infty} {x_n} = \R$
from the definition of set equality.
$\blacksquare$