Limit of Modulo Operation/Limit 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x$ and $y$ be real numbers.

Let $x \bmod y$ denote the modulo operation.


Then $\ds \lim_{y \mathop \to \infty} x \bmod y = x$ if $x \ge 0$.


Proof

As $y \to \infty$:

\(\ds 0\) \(\le\) \(\, \ds x \, \) \(\, \ds < \, \) \(\ds y\)
\(\ds \leadsto \ \ \) \(\ds 0\) \(\le\) \(\, \ds \frac x y \, \) \(\, \ds < \, \) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds \) \(\) \(\, \ds \floor {\frac x y} \, \) \(\, \ds = \, \) \(\ds 0\)


Therefore by the definition of modulo operation:

\(\ds \lim_{y \mathop \to \infty} x \bmod y\) \(=\) \(\ds \lim_{y \mathop \to \infty} x - y \floor {\dfrac x y}\)
\(\ds \) \(=\) \(\ds \lim_{y \mathop \to \infty} x - y \cdot 0\)
\(\ds \) \(=\) \(\ds x\)

Hence the result.

$\blacksquare$