Limit of Real Function/Examples/e^-1 over size x at 0

From ProofWiki
Jump to navigation Jump to search

Example of Limit of Real Function

$\ds \lim_{x \mathop \to 0} e^{-1 / \size x} = 0$


Proof

Limit-of-e-to-minus-1-over-size x.png

By definition of the limit of a real function:

$\ds \lim_{x \mathop \to a} \map f x = A$

if and only if:

$\forall \epsilon \in \R_{>0}: \exists \delta \in \R_{>0}: \forall x \in \R: 0 < \size {x - a} < \delta \implies \size {\map f x - A} < \epsilon$


Let $\epsilon \in \R_{>0}$ be chosen arbitrarily.

Then we have:

\(\ds e^{-1 / \size x}\) \(<\) \(\ds \epsilon\)
\(\ds \leadstoandfrom \ \ \) \(\ds -1 / \size x\) \(<\) \(\ds \ln \epsilon\)
\(\ds \leadstoandfrom \ \ \) \(\ds 1 / \size x\) \(>\) \(\ds -\ln \epsilon\)
\(\ds \) \(=\) \(\ds \map \ln {\dfrac 1 \epsilon}\) Logarithm of Reciprocal
\(\ds \leadstoandfrom \ \ \) \(\ds \size x\) \(<\) \(\ds \dfrac 1 {\map \ln {1 / \epsilon} }\)

So, having been given an arbitrary $\epsilon \in \R_{>0}$, let $\delta = \dfrac 1 {\map \ln {1 / \epsilon} }$.

Then:

$0 < \size x < \delta \implies \size {e^{-1 / \size x} } < \epsilon$

Hence by definition of limit of a real function:

$\ds \lim_{x \mathop \to 0} e^{-1 / \size x} = 0$

$\blacksquare$


Sources