Linear Combination of Solutions to Homogeneous Linear 2nd Order ODE
Jump to navigation
Jump to search
Theorem
Let $c_1$ and $c_2$ be real numbers.
Let $\map {y_1} x$ and $\map {y_2} x$ be particular solutions to the homogeneous linear second order ODE:
- $(1): \quad \dfrac {\d^2 y} {\d x^2} + \map P x \dfrac {\d y} {\d x} + \map Q x y = 0$
Then:
- $c_1 \, \map {y_1} x + c_2 \, \map {y_2} x$
is also a particular solution to $(1)$.
That is, a linear combination of particular solutions to a homogeneous linear second order ODE is also a particular solution to that ODE.
Proof
\(\ds \) | \(\) | \(\ds \paren {c_1 \, \map {y_1} x + c_2 \, \map {y_2} x}' ' + \map P x \paren {c_1 \, \map {y_1} x + c_2 \, \map {y_2} x}' + \map Q x \paren {c_1 \, \map {y_1} x + c_2 \, \map {y_2} x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {c_1 \, \map {y_1' '} x + c_2 \, \map {y_2' '} x} + \map P x \paren {c_1 \, \map {y_1'} x + c_2 \, \map {y_2'} x} + \map Q x \paren {c_1 \, \map {y_1} x + c_2 \, \map {y_2} x}\) | Linear Combination of Derivatives | |||||||||||
\(\ds \) | \(=\) | \(\ds c_1 \paren {\map {y_1' '} x + \map P x \, \map {y_1'} x + \map Q x \, \map {y_1} x} + c_2 \paren {\map {y_2' '} x + \map P x \, \map {y_2'} x + \map Q x \, \map {y_2} x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds c_1 \cdot 0 + c_2 \cdot 0\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
Hence the result.
$\blacksquare$
Sources
- 1972: George F. Simmons: Differential Equations ... (previous) ... (next): $\S 3.14$: Second Order Linear Equations: Introduction: Theorem $\text{C}$