Linear Second Order ODE/y'' - y' - 6 y = exp -x

From ProofWiki
Jump to navigation Jump to search

Theorem

The second order ODE:

$(1): \quad y - y' - 6 y = e^{-x}$

has the general solution:

$y = C_1 e^{3 x} + C_2 e^{-2 x} - \dfrac {e^{-x} } 4$


Proof 1

It can be seen that $(1)$ is a nonhomogeneous linear second order ODE with constant coefficients in the form:

$y + p y' + q y = \map R x$

where:

$p = -1$
$q = -6$
$\map R x = e^{-x}$


First we establish the solution of the corresponding constant coefficient homogeneous linear second order ODE:

$y - y' - 6 y = 0$

From Linear Second Order ODE: $y - y' - 6 y = 0$, this has the general solution:

$y_g = C_1 e^{3 x} + C_2 e^{-2 x}$


We have that:

$\map R x = e^{-x}$

and so from the Method of Undetermined Coefficients for the Exponential function:

$y_p = \dfrac {K e^{a x} } {a^2 + p a + q}$

where:

$K = 1$
$a = -1$
$p = -1$
$q = -6$


Hence:

\(\ds y_p\) \(=\) \(\ds \dfrac {e^{-x} } {1 + 1 - 6}\)
\(\ds \) \(=\) \(\ds -\dfrac {e^{-x} } 4\)


So from General Solution of Linear 2nd Order ODE from Homogeneous 2nd Order ODE and Particular Solution:

$y = y_g + y_p = C_1 e^{3 x} + C_2 e^{-2 x} - \dfrac {e^{-x} } 4$

$\blacksquare$


Proof 2

It can be seen that $(1)$ is a nonhomogeneous linear second order ODE in the form:

$y + p y' + q y = \map R x$

where:

$p = -1$
$q = -6$
$\map R x = e^{-x}$


First we establish the solution of the corresponding constant coefficient homogeneous linear second order ODE:

$y - y' - 6 y = 0$

From Linear Second Order ODE: $y - y' - 6 y = 0$, this has the general solution:

$y_g = C_1 e^{3 x} + C_2 e^{-2 x}$


It remains to find a particular solution $y_p$ to $(1)$.


Expressing $y_g$ in the form:

$y_g = C_1 \, \map {y_1} x + C_2 \, \map {y_2} x$

we have:

\(\ds \map {y_1} x\) \(=\) \(\ds e^{3 x}\)
\(\ds \map {y_2} x\) \(=\) \(\ds e^{-2 x}\)
\(\ds \leadsto \ \ \) \(\ds \map { {y_1}'} x\) \(=\) \(\ds 3 e^{3 x}\) Derivative of Exponential Function
\(\ds \map { {y_2}'} x\) \(=\) \(\ds -2 e^{-2 x}\) Derivative of Exponential Function


By the Method of Variation of Parameters, we have that:

$y_p = v_1 y_1 + v_2 y_2$

where:

\(\ds v_1\) \(=\) \(\ds \int -\frac {y_2 \, \map R x} {\map W {y_1, y_2} } \rd x\)
\(\ds v_2\) \(=\) \(\ds \int \frac {y_1 \, \map R x} {\map W {y_1, y_2} } \rd x\)

where $\map W {y_1, y_2}$ is the Wronskian of $y_1$ and $y_2$.


We have that:

\(\ds \map W {y_1, y_2}\) \(=\) \(\ds y_1 {y_2}' - y_2 {y_1}'\) Definition of Wronskian
\(\ds \) \(=\) \(\ds e^{3 x} \paren {-2 e^{-2 x} } - e^{-2 x} \paren {3 e^{3 x} }\)
\(\ds \) \(=\) \(\ds -2 e^x - 3 e^x\)
\(\ds \) \(=\) \(\ds -5 e^x\)


Hence:

\(\ds v_1\) \(=\) \(\ds \int -\frac {y_2 \, \map R x} {\map W {y_1, y_2} } \rd x\)
\(\ds \) \(=\) \(\ds \int -\frac {e^{-2 x} \cdot e^{-x} } {-5 e^x} \rd x\)
\(\ds \) \(=\) \(\ds \int \frac {e^{-4 x} } 5 \rd x\)
\(\ds \) \(=\) \(\ds -\frac 1 {20} e^{-4 x}\) Primitive of $e^{a x}$


\(\ds v_2\) \(=\) \(\ds \int \frac {y_1 \, \map R x} {\map W {y_1, y_2} } \rd x\)
\(\ds \) \(=\) \(\ds \int \frac {e^{3 x} \cdot e^{-x} } {-5 e^x} \rd x\)
\(\ds \) \(=\) \(\ds \int -\frac {e^x} 5 \rd x\)
\(\ds \) \(=\) \(\ds -\frac 1 5 e^x\) Primitive of $e^{a x}$


It follows that:

\(\ds y_p\) \(=\) \(\ds -\frac 1 {20} e^{-4 x} e^{3 x} - \frac 1 5 e^x e^{-2 x}\)
\(\ds \) \(=\) \(\ds -\frac 1 {20} e^{-x} - \frac 1 5 e^{-x}\) simplifying
\(\ds \) \(=\) \(\ds -\frac 1 4 e^{-x}\) further simplifying


So from General Solution of Linear 2nd Order ODE from Homogeneous 2nd Order ODE and Particular Solution:

$y = y_g + y_p = C_1 e^{3 x} + C_2 e^{-2 x} - \dfrac {e^{-x} } 4$

is the general solution to $(1)$.

$\blacksquare$


Proof 3

Taking Laplace transforms:

$\laptrans {y - y' - 6 y} = \laptrans {e^{-x} }$

We have:

\(\ds \laptrans {y - y' - 6 y}\) \(=\) \(\ds \laptrans {y} - \laptrans {y'} - 6 \laptrans y\) Linear Combination of Laplace Transforms
\(\ds \) \(=\) \(\ds s^2 \laptrans y - s \map y 0 - \map {y'} 0 - \paren {s \laptrans y - \map y 0} - 6 \laptrans y\)
\(\ds \) \(=\) \(\ds \paren {s^2 - s - 6} \laptrans y - \paren {s \map y 0 + \map {y'} 0 - \map y 0}\)

We also have:

\(\ds \laptrans {e^{-x} }\) \(=\) \(\ds \frac 1 {s - \paren {-1} }\) Laplace Transform of Exponential
\(\ds \) \(=\) \(\ds \frac 1 {s + 1}\)

So:

$\paren {s^2 - s - 6} \laptrans y = s \map y 0 + \paren {\map {y'} 0 - \map y 0} + \dfrac 1 {s + 1}$

Giving:

\(\ds \laptrans y\) \(=\) \(\ds \map y 0 \paren {\frac s {s^2 - s - 6} } + \paren {\map {y'} 0 - \map y 0} \paren {\frac 1 {s^2 - s - 6} } + \frac 1 {\paren {s + 1} \paren {s^2 - s - 6} }\)
\(\ds \) \(=\) \(\ds \map y 0 \paren {\frac s {\paren {s - 3} \paren {s + 2} } } + \paren {\map {y'} 0 - \map y 0} \paren {\frac 1 {\paren {s - 3} \paren {s + 2} } } + \frac 1 {\paren {s + 1} \paren {s - 3} \paren {s + 2} }\) factorising
\(\ds \) \(=\) \(\ds \frac {\map y 0} 5 \paren {\frac 2 {s + 2} + \frac 3 {s - 3} } + \frac {\map {y'} 0 - \map y 0} 5 \paren {\frac 1 {s - 3} - \frac 1 {s + 2} } + \frac 1 {20} \paren {\frac 1 {s - 3} + \frac 4 {s + 2} - \frac 5 {s + 1} }\) partial fraction expansion
\(\ds \) \(=\) \(\ds \paren {\frac {2 \map y 0 - \map {y'} 0 + \map y 0 + 1} 5} \frac 1 {s + 2} + \paren {\frac {3 \map y 0 + \map {y'} 0 - \map y 0} 5 + \frac 1 {20} } \frac 1 {s - 3} - \frac 1 {4 \paren {s + 1} }\)
\(\ds \) \(=\) \(\ds \paren {\frac {3 \map y 0 - \map {y'} 0 + 1} 5} \frac 1 {s + 2} + \paren {\frac {8 \map y 0 + 4 \map {y'} 0 + 1} {20} } \frac 1 {s - 3} - \frac 1 {4 \paren {s + 1} }\)

So:

\(\ds y\) \(=\) \(\ds \invlaptrans {\paren {\frac {3 \map y 0 - \map {y'} 0 + 1} 5} \frac 1 {s + 2} + \paren {\frac {8 \map y 0 + 4 \map {y'} 0 + 1} {20} } \frac 1 {s - 3} - \frac 1 {4 \paren {s + 1} } }\) Definition of Inverse Laplace Transform
\(\ds \) \(=\) \(\ds \paren {\frac {3 \map y 0 - \map {y'} 0 + 1} 5} \invlaptrans {\frac 1 {s + 2} } + \paren {\frac {8 \map y 0 + 4 \map {y'} 0 + 1} {20} } \invlaptrans {\frac 1 {s - 3} } - \frac 1 4 \invlaptrans {\frac 1 {s + 1} }\) Linear Combination of Laplace Transforms
\(\ds \) \(=\) \(\ds \paren {\frac {3 \map y 0 - \map {y'} 0 + 1} 5} \invlaptrans {\laptrans {e^{-2 x} } } + \paren {\frac {8 \map y 0 + 4 \map {y'} 0 + 1} {20} } \invlaptrans {\laptrans {e^{3 x} } } - \frac 1 4 \invlaptrans {\laptrans {e^{-x} } }\) Laplace Transform of Exponential
\(\ds \) \(=\) \(\ds \paren {\frac {3 \map y 0 - \map {y'} 0 + 1} 5} e^{-2 x} + \paren {\frac {8 \map y 0 + 4 \map {y'} 0 + 1} {20} } e^{3 x} - \frac 1 4 e^{-x}\) Definition of Inverse Laplace Transform

Setting:

$C_1 = \dfrac {8 \map y 0 + 4 \map {y'} 0 + 1} {20}$
$C_2 = \dfrac {3 \map y 0 - \map {y'} 0 + 1} 5$

gives the result.

$\blacksquare$