# Little-O Times Big-O is Little-O/Sequences

## Theorem

Let $\sequence {a_n}, \sequence {b_n}, \sequence {c_n}, \sequence {d_n}$ be sequences of real or complex numbers.

Let:

$a_n = \map \OO {b_n}$
$c_n = \map o {d_n}$

where:

$\OO$ denotes big-O notation
$o$ denotes little-o notation.

Then:

$a_n c_n = \map o {b_n d_n}$

## Proof

Let $\epsilon \in \R_{> 0}$.

Since $a_n = \map \OO {b_n}$:

$\exists c \in \R: c \ge 0: \exists n_0 \in \N: \paren {n \ge n_0 \implies \size {a_n} \le c \cdot \size {b_n} }$

Since $c_n = \map o {d_n}$:

$\exists n_1 \in \N: \paren {n \ge n_1 \implies \size {c_n} \le \dfrac \epsilon {c + 1} \cdot \size {d_n} }$

Thus for $n \ge \max \set {n_0, n_1}$:

 $\ds$  $\ds \size {a_n c_n}$ $\ds$ $=$ $\ds \size {a_n} \size {c_n}$ $\ds$ $\le$ $\ds \paren {c \cdot \size {b_n} } \paren {\frac \epsilon {c + 1} \cdot \size {d_n} }$ $\ds$ $\le$ $\ds \size {b_n} \paren {\epsilon \cdot \size {d_n} }$ $\ds$ $=$ $\ds \epsilon \cdot \size {b_n d_n}$

Thus $a_n c_n = \map o {b_n d_n}$.

$\blacksquare$