Natural Logarithm of 1 is 0
(Redirected from Logarithm of 1 is 0)
Jump to navigation
Jump to search
Theorem
- $\ln 1 = 0$
where $\ln 1$ denotes the natural logarithm of $1$.
Proof 1
We use the definition of the natural logarithm as an integral:
- $\ds \ln x = \int_1^x \frac {\d t} t$
From Integral on Zero Interval:
- $\ds \ln 1 = \int_1^1 \frac {\d t} t = 0$
$\blacksquare$
Proof 2
We use the definition of the natural logarithm as the inverse of the exponential:
- $\ln x = y \iff e^y = x$
Then:
\(\ds e^0\) | \(=\) | \(\ds 1\) | Exponential of Zero | |||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds \ln 1\) | \(=\) | \(\ds 0\) |
$\blacksquare$
Proof 3
We use the definition of the natural logarithm as the limit of a sequence:
- $\ds \ln x = \lim_{n \mathop \to \infty} n \paren {\sqrt [n] x - 1}$
Then:
\(\ds \ln 1\) | \(=\) | \(\ds \lim_{n \mathop \to \infty} n \paren {\sqrt [n] 1 - 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{n \mathop \to \infty} n \times 0\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{n \mathop \to \infty} 0\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
$\blacksquare$