Lower Closure of Singleton

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {S, \preceq}$ be an ordered set.

Let $s$ be an element of $S$.


Then:

$\set s^\preceq = s^\preceq$

where:

$\set s^\preceq$ denotes the lower closure of $\set s$
$s^\preceq$ denotes the lower closure of $s$.


Proof

\(\ds \set s^\preceq\) \(=\) \(\ds \bigcup \set {t^\preceq: t \in \set s}\) Definition of Lower Closure of Subset
\(\ds \) \(=\) \(\ds \bigcup \set {s^\preceq}\) Definition of Singleton
\(\ds \) \(=\) \(\ds s^\preceq\) Union of Singleton

$\blacksquare$


Sources