Lower Triangular Matrix/Examples/m greater than n
Jump to navigation
Jump to search
Example of Lower Triangular Matrix
A lower triangular matrix of order $m \times n$ such that $m > n$:
- $\mathbf L = \begin{bmatrix} a_{1 1} & 0 & 0 & \cdots & 0 & 0 \\ a_{2 1} & a_{2 2} & 0 & \cdots & 0 & 0 \\ a_{3 1} & a_{3 2} & a_{3 3} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n - 1, 1} & a_{n - 1, 2} & a_{n - 1, 3} & \cdots & a_{n - 1, n - 1} & 0 \\ a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n, n - 1} & a_{n n} \\ a_{n + 1, 1} & a_{n + 1, 2} & a_{n + 1, 3} & \cdots & a_{n + 1, n - 1} & a_{n + 1, n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m - 1, 1} & a_{m - 1, 2} & a_{m - 1, 3} & \cdots & a_{m - 1, n - 1} & a_{m - 1, n} \\ a_{m 1} & a_{m 2} & a_{m 3} & \cdots & a_{m, n - 1} & a_{m n} \\ \end{bmatrix}$