Lower Triangular Matrix/Examples/m less than n
Jump to navigation
Jump to search
Example of Lower Triangular Matrix
A lower triangular matrix of order $m \times n$ such that $m < n$:
- $\mathbf L = \begin{bmatrix} a_{1 1} & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 \\ a_{2 1} & a_{2 2} & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 \\ a_{3 1} & a_{3 2} & a_{3 3} & \cdots & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m - 1, 1} & a_{m - 1, 2} & a_{m - 1, 3} & \cdots & a_{m - 1, m - 1} & 0 & \cdots & 0 & 0 \\ a_{m 1} & a_{m 2} & a_{m 3} & \cdots & a_{m - 1, m} & a_{m m} & \cdots & 0 & 0 \\ \end{bmatrix}$