Magic Constant of Smallest Prime Magic Square with Consecutive Primes
Jump to navigation
Jump to search
Theorem
The magic constant of the smallest prime magic square whose elements are consecutive odd primes is $4 \, 440 \, 084 \, 513$.
Proof
The smallest prime magic square whose elements are consecutive odd primes is:
- $\begin{array}{|c|c|c|}
\hline 1 \, 480 \, 028 \, 159 & 1 \, 480 \, 028 \, 153 & 1 \, 480 \, 028 \, 201 \\ \hline 1 \, 480 \, 028 \, 213 & 1 \, 480 \, 028 \, 171 & 1 \, 480 \, 028 \, 129 \\ \hline 1 \, 480 \, 028 \, 141 & 1 \, 480 \, 028 \, 189 & 1 \, 480 \, 028 \, 183 \\ \hline \end{array}$
As can be seen by inspection, the sums of the elements in the rows, columns and Diagonal of Array is $4 \, 440 \, 084 \, 513$:
\(\ds 1 \, 480 \, 028 \, 159 + 1 \, 480 \, 028 \, 153 + 1 \, 480 \, 028 \, 201\) | \(=\) | \(\ds 4 \, 440 \, 084 \, 513\) | ||||||||||||
\(\ds 1 \, 480 \, 028 \, 213 + 1 \, 480 \, 028 \, 171 + 1 \, 480 \, 028 \, 129\) | \(=\) | \(\ds 4 \, 440 \, 084 \, 513\) | ||||||||||||
\(\ds 1 \, 480 \, 028 \, 141 + 1 \, 480 \, 028 \, 189 + 1 \, 480 \, 028 \, 183\) | \(=\) | \(\ds 4 \, 440 \, 084 \, 513\) |
\(\ds 1 \, 480 \, 028 \, 159 + 1 \, 480 \, 028 \, 213 + 1 \, 480 \, 028 \, 141\) | \(=\) | \(\ds 4 \, 440 \, 084 \, 513\) | ||||||||||||
\(\ds 1 \, 480 \, 028 \, 153 + 1 \, 480 \, 028 \, 171 + 1 \, 480 \, 028 \, 189\) | \(=\) | \(\ds 4 \, 440 \, 084 \, 513\) | ||||||||||||
\(\ds 1 \, 480 \, 028 \, 201 + 1 \, 480 \, 028 \, 129 + 1 \, 480 \, 028 \, 183\) | \(=\) | \(\ds 4 \, 440 \, 084 \, 513\) |
\(\ds 1 \, 480 \, 028 \, 159 + 1 \, 480 \, 028 \, 171 + 1 \, 480 \, 028 \, 183\) | \(=\) | \(\ds 4 \, 440 \, 084 \, 513\) | ||||||||||||
\(\ds 1 \, 480 \, 028 \, 141 + 1 \, 480 \, 028 \, 171 + 1 \, 480 \, 028 \, 201\) | \(=\) | \(\ds 4 \, 440 \, 084 \, 513\) |
![]() | This theorem requires a proof. In particular: It remains to be demonstrated that there are no prime magic squares that are any smaller than this. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |