Matrix Scalar Product Distributes over Matrix Entrywise Addition

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbf A$ and $\mathbf B$ be matrices both of order $m \times n$.

Let $k$ be a scalar.

Then:

$k \paren {\mathbf A + \mathbf B} = k \mathbf A + k \mathbf B$

where:

$+$ denotes matrix entrywise addition
$k \mathbf A$ etc. denotes matrix scalar product.


Proof

Let $a_{i j}$ and $b_{i j}$ denote the $\tuple {i, j}$th entry in $\mathbf A$ and $\mathbf B$ respectively.

\(\ds \) \(\) \(\ds k \mathbf A + k \mathbf B\)
\(\ds \forall i \in \closedint 1 m, \forall j \in \closedint 1 n: \, \) \(\ds \) \(=\) \(\ds k a_{i j} + k b_{i j}\) Definition of Matrix Scalar Product
\(\ds \) \(=\) \(\ds k \paren {a_{i j} + b_{i j} }\) Distributive Property
\(\ds \) \(=\) \(\ds k \paren {\mathbf A + \mathbf B}\) Definition of Matrix Entrywise Addition

$\blacksquare$


Sources