Matrix Scalar Product Distributes over Matrix Entrywise Addition
Jump to navigation
Jump to search
Theorem
Let $\mathbf A$ and $\mathbf B$ be matrices both of order $m \times n$.
Let $k$ be a scalar.
Then:
- $k \paren {\mathbf A + \mathbf B} = k \mathbf A + k \mathbf B$
where:
- $+$ denotes matrix entrywise addition
- $k \mathbf A$ etc. denotes matrix scalar product.
Proof
Let $a_{i j}$ and $b_{i j}$ denote the $\tuple {i, j}$th entry in $\mathbf A$ and $\mathbf B$ respectively.
\(\ds \) | \(\) | \(\ds k \mathbf A + k \mathbf B\) | ||||||||||||
\(\ds \forall i \in \closedint 1 m, \forall j \in \closedint 1 n: \, \) | \(\ds \) | \(=\) | \(\ds k a_{i j} + k b_{i j}\) | Definition of Matrix Scalar Product | ||||||||||
\(\ds \) | \(=\) | \(\ds k \paren {a_{i j} + b_{i j} }\) | Distributive Property | |||||||||||
\(\ds \) | \(=\) | \(\ds k \paren {\mathbf A + \mathbf B}\) | Definition of Matrix Entrywise Addition |
$\blacksquare$
Sources
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): matrix (plural matrices)
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): matrix (plural matrices)