Matroid Bases Iff Satisfies Formulation 1 of Matroid Base Axiom/Necessary Condition
Jump to navigation
Jump to search
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Theorem
Let $M = \struct {S, \mathscr I}$ be a matroid.
Let $\mathscr B$ be the set of bases of the matroid $M$.
Then $\mathscr B$ satisfies formulation $1$ of base axiom:
\((\text B 1)\) | $:$ | \(\ds \forall B_1, B_2 \in \mathscr B:\) | \(\ds x \in B_1 \setminus B_2 \implies \exists y \in B_2 \setminus B_1 : \paren {B_1 \setminus \set x} \cup \set y \in \mathscr B \) |
Proof
Let $B_1, B_2 \in \mathscr B$.
Let $x \in B_1 \setminus B_2$.
We have:
\(\ds \size {B_1 \setminus \set x}\) | \(=\) | \(\ds \size {B_1} - \size {\set x}\) | Cardinality of Set Difference with Subset | |||||||||||
\(\ds \) | \(=\) | \(\ds \size {B_2} - \size {\set x}\) | All Bases of Matroid have same Cardinality | |||||||||||
\(\ds \) | \(=\) | \(\ds \size {B_2} - 1\) | Cardinality of Singleton | |||||||||||
\(\ds \) | \(<\) | \(\ds \size {B_2}\) |
By matroid axiom $(\text I 3)$:
- $\exists y \in B_2 \setminus \paren{B_1 \setminus \set x} : \paren{ B_1 \setminus \set x} \cup \set y \in \mathscr I$
We have:
\(\ds B_2 \setminus \paren{B_1 \setminus \set x}\) | \(=\) | \(\ds \paren{B_2 \setminus B_1} \cup \paren{B_2 \cap \set x}\) | Set Difference with Set Difference is Union of Set Difference with Intersection | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren{B_2 \setminus B_1} \cup \O\) | Intersection With Singleton is Disjoint if Not Element | |||||||||||
\(\ds \) | \(=\) | \(\ds B_2 \setminus B_1\) | Union with Empty Set |
Then:
- $\exists y \in B_2 \setminus B_1 : \paren{ B_1 \setminus \set x} \cup \set y \in \mathscr I$
We have:
\(\ds \size{\paren { B_1 \setminus \set x} \cup \set y}\) | \(=\) | \(\ds \size{B_1 \setminus \set x} + \size{\set y}\) | Corollary to Cardinality of Set Union | |||||||||||
\(\ds \) | \(=\) | \(\ds \size{B_1} - \size{\set x} + \size{\set y}\) | Cardinality of Set Difference with Subset | |||||||||||
\(\ds \) | \(=\) | \(\ds \size{B_1} - 1 + 1\) | Cardinality of Singleton | |||||||||||
\(\ds \) | \(=\) | \(\ds \size{B_1}\) |
From Independent Subset is Base if Cardinality Equals Cardinality of Base:
- $\paren { B_1 \setminus \set x} \cup \set y \in \mathscr B$
Since $x$, $B_1$ and $B_2$ were arbitrary then the result follows.
$\blacksquare$