Max and Min Operations are Distributive over Each Other
Jump to navigation
Jump to search
Theorem
The Max and Min operations are distributive over each other:
- $\map \max {x, \map \min {y, z} } = \map \min {\map \max {x, y}, \map \max {x, z} }$
- $\map \max {\map \min {x, y}, z} = \map \min {\map \max {x, z}, \map \max {y, z} }$
- $\map \min {x, \map \max {y, z} } = \map \max {\map \min {x, y}, \map \min {x, z} }$
- $\map \min {\map \max {x, y}, z} = \map \max {\map \min {x, z}, \map \min {y, z} }$
Proof
To simplify our notation, let $\map \max {x, y}$ be (temporarily) denoted $x \overline \wedge y$, and let $\map \min {x, y}$ be (temporarily) denoted $x \underline \vee y$.
Note that, once we have proved:
- $x \overline \wedge \paren {y \underline \vee z} = \paren {x \overline \wedge y} \underline \vee \paren {x \overline \wedge z}$
- $x \underline \vee \paren {y \overline \wedge z} = \paren {x \underline \vee y} \overline \wedge \paren {x \underline \vee z}$
then the other results follow immediately from Max Operation is Commutative and Min Operation is Commutative.
There are the following cases to consider:
- $(1): \quad x \le y \le z$
- $(2): \quad x \le z \le y$
- $(3): \quad y \le x \le z$
- $(4): \quad y \le z \le x$
- $(5): \quad z \le x \le y$
- $(6): \quad z \le y \le x$
$(1): \quad $ Let $x \le y \le z$.
Then:
\(\ds x \overline \wedge \paren {y \underline \vee z}\) | \(=\) | \(\ds x \overline \wedge y = y\) | ||||||||||||
\(\ds \paren {x \overline \wedge y} \underline \vee \paren {x \overline \wedge z}\) | \(=\) | \(\ds y \underline \vee z = y\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \) | ||||||||||||
\(\ds x \underline \vee \paren {y \overline \wedge z}\) | \(=\) | \(\ds x \underline \vee z = x\) | ||||||||||||
\(\ds \paren {x \underline \vee y} \overline \wedge \paren {x \underline \vee z}\) | \(=\) | \(\ds x \overline \wedge x = x\) |
$(2): \quad $ Let $x \le z \le y$.
Then:
\(\ds x \overline \wedge \paren {y \underline \vee z}\) | \(=\) | \(\ds x \overline \wedge z = z\) | ||||||||||||
\(\ds \paren {x \overline \wedge y} \underline \vee \paren {x \overline \wedge z}\) | \(=\) | \(\ds y \underline \vee z = z\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \) | ||||||||||||
\(\ds x \underline \vee \paren {y \overline \wedge z}\) | \(=\) | \(\ds x \underline \vee y = x\) | ||||||||||||
\(\ds \paren {x \underline \vee y} \overline \wedge \paren {x \underline \vee z}\) | \(=\) | \(\ds x \overline \wedge x = x\) |
$(3): \quad $ Let $y \le x \le z$.
Then:
\(\ds x \overline \wedge \paren {y \underline \vee z}\) | \(=\) | \(\ds x \overline \wedge y = x\) | ||||||||||||
\(\ds \paren {x \overline \wedge y} \underline \vee \paren {x \overline \wedge z}\) | \(=\) | \(\ds x \underline \vee z = x\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \) | ||||||||||||
\(\ds x \underline \vee \paren {y \overline \wedge z}\) | \(=\) | \(\ds x \underline \vee z = x\) | ||||||||||||
\(\ds \paren {x \underline \vee y} \overline \wedge \paren {x \underline \vee z}\) | \(=\) | \(\ds y \overline \wedge x = x\) |
$(4): \quad $ Let $y \le z \le x$.
Then:
\(\ds x \overline \wedge \paren {y \underline \vee z}\) | \(=\) | \(\ds x \overline \wedge y = x\) | ||||||||||||
\(\ds \paren {x \overline \wedge y} \underline \vee \paren {x \overline \wedge z}\) | \(=\) | \(\ds x \underline \vee x = x\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \) | ||||||||||||
\(\ds x \underline \vee \paren {y \overline \wedge z}\) | \(=\) | \(\ds x \underline \vee z = z\) | ||||||||||||
\(\ds \paren {x \underline \vee y} \overline \wedge \paren {x \underline \vee z}\) | \(=\) | \(\ds y \overline \wedge z = z\) |
$(5): \quad $ Let $z \le x \le y$.
Then:
\(\ds x \overline \wedge \paren {y \underline \vee z}\) | \(=\) | \(\ds x \overline \wedge z = x\) | ||||||||||||
\(\ds \paren {x \overline \wedge y} \underline \vee \paren {x \overline \wedge z}\) | \(=\) | \(\ds y \underline \vee x = x\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \) | ||||||||||||
\(\ds x \underline \vee \paren {y \overline \wedge z}\) | \(=\) | \(\ds x \underline \vee y = x\) | ||||||||||||
\(\ds \paren {x \underline \vee y} \overline \wedge \paren {x \underline \vee z}\) | \(=\) | \(\ds x \overline \wedge z = x\) |
$(6): \quad $ Let $z \le y \le x$.
Then:
\(\ds x \overline \wedge \paren {y \underline \vee z}\) | \(=\) | \(\ds x \overline \wedge z = x\) | ||||||||||||
\(\ds \paren {x \overline \wedge y} \underline \vee \paren {x \overline \wedge z}\) | \(=\) | \(\ds x \underline \vee x = x\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \) | ||||||||||||
\(\ds x \underline \vee \paren {y \overline \wedge z}\) | \(=\) | \(\ds x \underline \vee y = y\) | ||||||||||||
\(\ds \paren {x \underline \vee y} \overline \wedge \paren {x \underline \vee z}\) | \(=\) | \(\ds y \overline \wedge z = y\) |
Thus in all cases it can be seen that the result holds.
$\blacksquare$