Mean Ergodic Theorem (Hilbert Space)/Lemma

From ProofWiki
Jump to navigation Jump to search

Lemma

Let $\GF \in \set {\R, \C}$.

Let $\struct {\HH, \innerprod \cdot \cdot}$ be a Hilbert space over $\mathbb F$.

Let $U : \HH \to \HH$ be a bounded linear operator such that:

$\forall f \in \HH : \norm {\map U f} \le \norm f$


Let $B \subseteq \HH$ be the linear subspace defined as:

$B := \set {\map U h - h : h \in \HH }$


Then:

$I^\perp \subseteq \overline B$


Proof

It suffice to show $B^\perp \subseteq I$.

Indeed, then it follows:

\(\ds I ^\perp\) \(\subseteq\) \(\ds \paren {B^\perp} ^\perp\) Orthocomplement Reverses Subset
\(\ds \) \(=\) \(\ds \overline B\) Double Orthocomplement is Closed Linear Span


Recall that the adjoint $U^\ast$ of $U$ exists by Existence and Uniqueness of Adjoint.


Let $f \in B^\perp$.

Then $\map U f = f$, as:

\(\ds \norm {\map {U^\ast} f - f}^2\) \(=\) \(\ds \innerprod {\map {U^\ast} f - f} {\map {U^\ast} f - f}\) Definition of Inner Product Norm
\(\ds \) \(=\) \(\ds \innerprod {\map {U^\ast} f} g - \innerprod f g\) where $g := \map {U^\ast} f - f$
\(\ds \) \(=\) \(\ds \innerprod f {\map U g - g}\)
\(\ds \) \(=\) \(\ds 0\) as $\map U g - g \in B$

Therefore $\map U f = f$, as:

\(\ds \norm {\map U f - f}^2\) \(=\) \(\ds \innerprod {\map U f - f} {\map U f - f}\) Definition of Inner Product Norm
\(\ds \) \(=\) \(\ds \innerprod {\map U f} {\map U f} - \innerprod {\map U f} f - \innerprod f {\map U f} + \norm f^2\)
\(\ds \) \(\le\) \(\ds 2 \norm f^2 - \innerprod {\map U f} f - \innerprod f {\map U f}\) by hypothesis
\(\ds \) \(=\) \(\ds 2 \norm f^2 - \innerprod f {\map {U^\ast} f} - \innerprod {\map {U^\ast} f} f\)
\(\ds \) \(=\) \(\ds 0\) as $\map {U^\ast} f = f$

$\blacksquare$