Measure is Monotone

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {X, \Sigma, \mu}$ be a measure space.


Then $\mu$ is monotone, that is:

$\forall E, F \in \Sigma: E \subseteq F \implies \map \mu E \le \map \mu F$


Resolution of the Identity

Let $X$ be a topological space.

Let $\map \BB X$ be the Borel $\sigma$-algebra of $X$.

Let $\struct {\HH, \innerprod \cdot \cdot}$ be a Hilbert space over $\C$.

Let $\map B \HH$ be the space of bounded linear transformations on $\HH$.

Let $\le_{\map B \HH}$ be the canonical preordering of $\map B \HH$.

Let $\EE : \map \BB X \to \map B {\HH}$ be a resolution of the identity.

Let $E, F \in \map \BB X$ be such that $E \subseteq F$.


Then:

$\map \EE E \le_{\map B \HH} \map \EE F$


Proof

A direct corollary of Non-Negative Additive Function is Monotone.

$\blacksquare$


Sources